
Python and Epics: Channel Access Interface to Python

Matthew Newville

Consortium for Advanced Radiation Sciences
University of Chicago

October 12, 2010

http://cars9.uchicago.edu/software/python/pyepics3/

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Why Python? The Standard Answers

Clean Syntax Easy to learn, remember, and read

High Level Language No pointers, dynamic memory, automatic memory

Cross Platform code portable to Unix, Windows, Mac.

Object Oriented full object model, name spaces. Also: procedural!

Extensible with C, C++, Fortran, Java, .NET

Many Libraries GUIs, Databases, Web, Image Processing, Array math

Free Both senses of the word. No, really: completely free.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Why Python? The Real Answer

Scientists use Python.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Why Do Scientists Use Python?

Python is great. The tools are even better:

numpy Fast arrays.

matplotlib Excellent Plotting library

scipy Numerical Algorithms (FFT, lapack, fitting, . . .)

f2py Wrapping Fortran for Python

sage Symbolic math (ala Maple, Mathematica)

GUI Choices Tk, wxWidgets, Qt, . . .

Free Python is Free. All these tools are Free (BSD).

All of these tools use the C implementation of Python.

NOT Jython (Python in Java) or IronPython (Python in .NET):

I am not talking about Jython.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Why Do Scientists Use Python?

Python is great. The tools are even better:

numpy Fast arrays.

matplotlib Excellent Plotting library

scipy Numerical Algorithms (FFT, lapack, fitting, . . .)

f2py Wrapping Fortran for Python

sage Symbolic math (ala Maple, Mathematica)

GUI Choices Tk, wxWidgets, Qt, . . .

Free Python is Free. All these tools are Free (BSD).

All of these tools use the C implementation of Python.

NOT Jython (Python in Java) or IronPython (Python in .NET):

I am not talking about Jython.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Channel Access for Python: Brief History

It’s easy to wrap C for Python.

There have been several wrappings of Epics CA:

G Savage (FNAL) ∼1999. Very low-level wrapping, much like C interface: pass
around chids and specifying DBR XXXX types all the time. Uses SWIG.

MN started with EZCA, then moved to custom mapping of CA (∼2002), with
emphasis on a Python PV Object, not low-level interface. Used SWIG.

X. Wang at PSI, N. Yamamoto at KEK built upon Savage’s wrapping,
updating for better 3.14 support, and using C-Python API (not SWIG).

M. Abbot at Diamond wrote an interface with ctypes (∼2008) but used a
non-standard third-party psuedo-threading library.

Sept 2009, A discussion on Tech-Talk asked “Can we combine forces?”.

I was growing unhappy with my own library (Windows build, no connection callbacks)

. . . So I rewrote from scratch.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Channel Access for Python: Brief History

It’s easy to wrap C for Python.

There have been several wrappings of Epics CA:

G Savage (FNAL) ∼1999. Very low-level wrapping, much like C interface: pass
around chids and specifying DBR XXXX types all the time. Uses SWIG.

MN started with EZCA, then moved to custom mapping of CA (∼2002), with
emphasis on a Python PV Object, not low-level interface. Used SWIG.

X. Wang at PSI, N. Yamamoto at KEK built upon Savage’s wrapping,
updating for better 3.14 support, and using C-Python API (not SWIG).

M. Abbot at Diamond wrote an interface with ctypes (∼2008) but used a
non-standard third-party psuedo-threading library.

Sept 2009, A discussion on Tech-Talk asked “Can we combine forces?”.

I was growing unhappy with my own library (Windows build, no connection callbacks)

. . . So I rewrote from scratch.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

PyEpics3: Goals and Overview

Starting Wish List:

complete (nearly?) exposure of low-level CA.

high-level PV class built on this.

thread support (as well as Python can).

preemptive callbacks: connection, event, put.

documentation and unit-testing.

easy installation, including Windows.

Support for Python 2 and Python 3.

The key decision: Use Python’s ctypes module. NO C Code!

ctypes for libca.so

import ctypes

libca = ctypes.cdll.LoadLibrary(’libca.so’)

libca.ca context create(1)

chid = ctypes.c long()

libca.ca create channel(’MyPV’, 0,0,0, ctypes.byref(chid))

libca.ca pend event.argtypes = [ctypes.c_double]

libca.ca pend event(1.0e-3)

print ’Connected: ’, libca.ca state(chid) == 2 # (CS CONN)

print ’Host Name: ’, libca.ca host name(chid)

Makes several goals trivial:

1 Easy install on all systems:
python setup.py install

2 best thread support possible.

3 Python 2 and Python 3.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

PyEpics3: Goals and Overview

Starting Wish List:

complete (nearly?) exposure of low-level CA.

high-level PV class built on this.

thread support (as well as Python can).

preemptive callbacks: connection, event, put.

documentation and unit-testing.

easy installation, including Windows.

Support for Python 2 and Python 3.

The key decision: Use Python’s ctypes module. NO C Code!

ctypes for libca.so

import ctypes

libca = ctypes.cdll.LoadLibrary(’libca.so’)

libca.ca context create(1)

chid = ctypes.c long()

libca.ca create channel(’MyPV’, 0,0,0, ctypes.byref(chid))

libca.ca pend event.argtypes = [ctypes.c_double]

libca.ca pend event(1.0e-3)

print ’Connected: ’, libca.ca state(chid) == 2 # (CS CONN)

print ’Host Name: ’, libca.ca host name(chid)

Makes several goals trivial:

1 Easy install on all systems:
python setup.py install

2 best thread support possible.

3 Python 2 and Python 3.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

PyEpics3: module and classes

PyEpics3 contains 3 levels of access to CA:

Lowest level: ca and dbr modules. C-like API, nearly complete.

High level: PV object. Built on ca module.

Functional: caget(), caput(), cainfo(), camonitor(), Built on PV.

caget() / caput()

>>> from epics import caget, caput, cainfo

>>> m1 = caget(’XXX:m1.VAL’)

>>> print m1

-1.2001

>>> caput(’XXX:m1.VAL’, 0)

>>> caput(’XXX:m1.VAL’, 2.30, wait=True)

>>> print caget(’XXX:m1.DIR’)

1

>>> print caget(’XXX:m1.DIR’, as_string=True)

’Pos’

This is probably too easy, huh?

cainfo()

>>> cainfo(’XXX.m1.VAL’)

== XXX:m1.VAL (double) ==

value = 2.3

char_value = 2.3000

count = 1

units = mm

precision = 4

host = xxx.aps.anl.gov:5064

access = read/write

status = 1

severity = 0

timestamp = 1265996455.417 (2010-Feb-12 11:40:55.417)

upper_ctrl_limit = 200.0

lower_ctrl_limit = -200.0

upper_disp_limit = 200.0

lower_disp_limit = -200.0

upper_alarm_limit = 0.0

lower_alarm_limit = 0.0

upper_warning_limit = 0.0

lower_warning = 0.0

PV is monitored internally

no user callbacks defined.

=============================

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

PyEpics3: module and classes

PyEpics3 contains 3 levels of access to CA:

Lowest level: ca and dbr modules. C-like API, nearly complete.

High level: PV object. Built on ca module.

Functional: caget(), caput(), cainfo(), camonitor(), Built on PV.

caget() / caput()

>>> from epics import caget, caput, cainfo

>>> m1 = caget(’XXX:m1.VAL’)

>>> print m1

-1.2001

>>> caput(’XXX:m1.VAL’, 0)

>>> caput(’XXX:m1.VAL’, 2.30, wait=True)

>>> print caget(’XXX:m1.DIR’)

1

>>> print caget(’XXX:m1.DIR’, as_string=True)

’Pos’

This is probably too easy, huh?

cainfo()

>>> cainfo(’XXX.m1.VAL’)

== XXX:m1.VAL (double) ==

value = 2.3

char_value = 2.3000

count = 1

units = mm

precision = 4

host = xxx.aps.anl.gov:5064

access = read/write

status = 1

severity = 0

timestamp = 1265996455.417 (2010-Feb-12 11:40:55.417)

upper_ctrl_limit = 200.0

lower_ctrl_limit = -200.0

upper_disp_limit = 200.0

lower_disp_limit = -200.0

upper_alarm_limit = 0.0

lower_alarm_limit = 0.0

upper_warning_limit = 0.0

lower_warning = 0.0

PV is monitored internally

no user callbacks defined.

=============================

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

ca module: low-level, but still Python

Python namespaces used ca fcn → ca.fcn, DBR XXXX → dbr.XXXX.

The ca interface

from epics import ca

chid = ca.create_channel(’XXX:m1.VAL’)

count = ca.element_count(chid)

ftype = ca.field_type(chid)

print "Channel ", chid, count, ftype

value = ca.get()

print value

ca.put(chid, 1.0)

ca.put(chid, 0.0, wait=True)

user defined callback

def onChanges(pvname=None, value=None, **kw):

fmt = ’New Value for %s value=%s\n’

print fmt % (pvname, str(value))

subscribe for changes

eventID = ca.create_subscription(chid,

userfcn=onChanges)

while True:

time.sleep(0.001)

Enhancements:

OK to forget to initialize CA.

OK to forget to create a context
(expect in Python threads).

OK to not explicitly wait for
connection.

OK to not clean up at exit.

get() returns value.

SEVCHK → Python exceptions

The CA functions are lightly wrapped (Python decorators) to ensure

CA is initialized and finalized.

chid values are reasonable (C longs)

channels are connected when needed.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

ca module: low-level, but still Python

Python namespaces used ca fcn → ca.fcn, DBR XXXX → dbr.XXXX.

The ca interface

from epics import ca

chid = ca.create_channel(’XXX:m1.VAL’)

count = ca.element_count(chid)

ftype = ca.field_type(chid)

print "Channel ", chid, count, ftype

value = ca.get()

print value

ca.put(chid, 1.0)

ca.put(chid, 0.0, wait=True)

user defined callback

def onChanges(pvname=None, value=None, **kw):

fmt = ’New Value for %s value=%s\n’

print fmt % (pvname, str(value))

subscribe for changes

eventID = ca.create_subscription(chid,

userfcn=onChanges)

while True:

time.sleep(0.001)

Enhancements:

OK to forget to initialize CA.

OK to forget to create a context
(expect in Python threads).

OK to not explicitly wait for
connection.

OK to not clean up at exit.

get() returns value.

SEVCHK → Python exceptions

The CA functions are lightly wrapped (Python decorators) to ensure

CA is initialized and finalized.

chid values are reasonable (C longs)

channels are connected when needed.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

More notes on the ca module

Preemptive Callbacks used by default. Must be set before using CA.

Connection and Event callbacks are used internally.

DBR CTRL and DBR TIME variants supported, not DBR STS or DBR GR.

These other “design choices” were made, but are configurable:

Event subscriptions use mask = (EVENT | LOG | ALARM.)

EPICS CA MAX ARRAY BYTES set to 16777216 (16Mb) unless already set.

Event Callbacks are used internally except for large arrays (as defined by
ca.AUTOMONITOR LENGTH (default = 16K).

Small Arrays will be converted to numpy arrays (if available).

Small CHAR waveforms can be converted to strings.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

PV objects: Easier to use, Full-featured.

Most python programmers will want to use PV objects:

Using PV objects

>>> from epics import PV

>>> pv1 = PV(’XXX:m1.VAL’)

>>> print pv1.count, pv1.type

(1, ’double’)

>>> print pv1.get()

-2.3456700000000001

>>> pv1.value = 3.0 # = pv1.put(3.0)

>>> pv1.value # = pv1.get()

3.0

>>> print pv.get(as_string=True)

’3.0000’

>>> # user defined callback

>>> def onChanges(pvname=None, value=None, **kw):

... fmt = ’New Value for %s value=%s\n’

... print fmt % (pvname, str(value))

>>> # subscribe for changes

>>> pv1.add_callback(onChanges)

>>> while True:

... time.sleep(0.001)

Automatic connection management.

Attributes for many properties (count,
type, host,upper crtl limit, . . .)

Can use get() / put() methods

. . . or PV.value attribute.

as string uses ENUM labels or
Precision.

put() can wait or run user callback
when complete.

connection callbacks.

multiple event callbacks.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Devices: collections of PVs

A device is a collection of PVs, usually sharing a Prefix.

Epics Analog Input as Python epics.Device

import epics

class ai(epics.Device):

"Simple analog input device"

_fields = (’VAL’, ’EGU’, ’HOPR’, ’LOPR’, ’PREC’,

’NAME’, ’DESC’, ’DTYP’, ’INP’, ’LINR’, ’RVAL’,

’ROFF’, ’EGUF’, ’EGUL’, ’AOFF’, ’ASLO’, ’ESLO’,

’EOFF’, ’SMOO’, ’HIHI’, ’LOLO’, ’HIGH’, ’LOW’,

’HHSV’, ’LLSV’, ’HSV’, ’LSV’, ’HYST’)

def __init__(self, prefix):

if not prefix.endswith(’.’):

prefix = "%s." % prefix

epics.Device.__init__(self, prefix, self._fields)

An epics.Device has get and
put methods and a PV method to
return the underlying PV.

That is really the entire definition.

Using an ai device

>>> Pump1 = ai(’XXX:ip1:PRES’)

>>> print "%s = %s %s\n" % (Pump1.get(’DESC’),

Pump1.get(’VAL’,as_string=True),

Pump1.get(’EGU’))

Ion pump 1 Pressure = 4.1e-07 Torr

>>> print Pump1.get(’DTYP’, as_string=True)

asyn MPC

>>> Pump1.PV(’VAL’) # Get underlying PV

<PV ’XXX:ip1:PRES.VAL’, count=1, type=double, access=read/write>

Yes, it is that easy.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Devices: collections of PVs

A device is a collection of PVs, usually sharing a Prefix.

Epics Analog Input as Python epics.Device

import epics

class ai(epics.Device):

"Simple analog input device"

_fields = (’VAL’, ’EGU’, ’HOPR’, ’LOPR’, ’PREC’,

’NAME’, ’DESC’, ’DTYP’, ’INP’, ’LINR’, ’RVAL’,

’ROFF’, ’EGUF’, ’EGUL’, ’AOFF’, ’ASLO’, ’ESLO’,

’EOFF’, ’SMOO’, ’HIHI’, ’LOLO’, ’HIGH’, ’LOW’,

’HHSV’, ’LLSV’, ’HSV’, ’LSV’, ’HYST’)

def __init__(self, prefix):

if not prefix.endswith(’.’):

prefix = "%s." % prefix

epics.Device.__init__(self, prefix, self._fields)

An epics.Device has get and
put methods and a PV method to
return the underlying PV.

That is really the entire definition.

Using an ai device

>>> Pump1 = ai(’XXX:ip1:PRES’)

>>> print "%s = %s %s\n" % (Pump1.get(’DESC’),

Pump1.get(’VAL’,as_string=True),

Pump1.get(’EGU’))

Ion pump 1 Pressure = 4.1e-07 Torr

>>> print Pump1.get(’DTYP’, as_string=True)

asyn MPC

>>> Pump1.PV(’VAL’) # Get underlying PV

<PV ’XXX:ip1:PRES.VAL’, count=1, type=double, access=read/write>

Yes, it is that easy.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Subclassing Devices

Of course, a device can be subclassed, to add functionality.

Scaler device

import epics

class Scaler(epics.Device):

"SynApps Scaler Record"

...

def OneShotMode(self):

"set to one shot mode"

self.put(’.CONT’, 0)

def CountTime(self, ctime):

"set count time"

self.put(’.TP’, ctime)

Simply addd Methods to turn a device into
a full Object.

Can also complex functionality, from dy-
namic code at the client level.

Long calculations, DB lookups, etc.

Use ai device

s1 = Scaler(’XXX:scaler1’)

s1.setCalc(2, ’(B-2000*A/10000000.)’)

s1.enableCalcs()

s1.OneShotMode()

s1.Count(t=5.0)

print ’Names: ’, s1.getNames()

print ’Raw values: ’, s1.Read(use_calcs=False)

print ’Calc values: ’, s1.Read(use_calcs=True)

Example Program: Read Ion Chamber
currents, amplifier settings, x-ray energy,
compute photon flux, post to PVs.

Needs table of coefficients (∼16kBytes of
data), but then ∼100 lines of Python.

A Motor Device has ∼100 fields, and methods to move
motors in User, Dial, Raw units, check limits, etc.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Subclassing Devices

Of course, a device can be subclassed, to add functionality.

Scaler device

import epics

class Scaler(epics.Device):

"SynApps Scaler Record"

...

def OneShotMode(self):

"set to one shot mode"

self.put(’.CONT’, 0)

def CountTime(self, ctime):

"set count time"

self.put(’.TP’, ctime)

Simply addd Methods to turn a device into
a full Object.

Can also complex functionality, from dy-
namic code at the client level.

Long calculations, DB lookups, etc.

Use ai device

s1 = Scaler(’XXX:scaler1’)

s1.setCalc(2, ’(B-2000*A/10000000.)’)

s1.enableCalcs()

s1.OneShotMode()

s1.Count(t=5.0)

print ’Names: ’, s1.getNames()

print ’Raw values: ’, s1.Read(use_calcs=False)

print ’Calc values: ’, s1.Read(use_calcs=True)

Example Program: Read Ion Chamber
currents, amplifier settings, x-ray energy,
compute photon flux, post to PVs.

Needs table of coefficients (∼16kBytes of
data), but then ∼100 lines of Python.

A Motor Device has ∼100 fields, and methods to move
motors in User, Dial, Raw units, check limits, etc.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Subclassing Devices

Of course, a device can be subclassed, to add functionality.

Scaler device

import epics

class Scaler(epics.Device):

"SynApps Scaler Record"

...

def OneShotMode(self):

"set to one shot mode"

self.put(’.CONT’, 0)

def CountTime(self, ctime):

"set count time"

self.put(’.TP’, ctime)

Simply addd Methods to turn a device into
a full Object.

Can also complex functionality, from dy-
namic code at the client level.

Long calculations, DB lookups, etc.

Use ai device

s1 = Scaler(’XXX:scaler1’)

s1.setCalc(2, ’(B-2000*A/10000000.)’)

s1.enableCalcs()

s1.OneShotMode()

s1.Count(t=5.0)

print ’Names: ’, s1.getNames()

print ’Raw values: ’, s1.Read(use_calcs=False)

print ’Calc values: ’, s1.Read(use_calcs=True)

Example Program: Read Ion Chamber
currents, amplifier settings, x-ray energy,
compute photon flux, post to PVs.

Needs table of coefficients (∼16kBytes of
data), but then ∼100 lines of Python.

A Motor Device has ∼100 fields, and methods to move
motors in User, Dial, Raw units, check limits, etc.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

GUI Controls with wxPython

Many PV types (Double, Float, String, Enum) have wxPython widgets, which
automatically tie to the PV.

Sample wx widget Code

from epics import PV

from epics.wx import wxlib

txt wid = wxlib.pvText(Parent, pv=PV(’SomePV’),

size=(100,-1))

txtCtrl wid = wxlib.pvTextCtrl(Parent, pv=PV(’SomePV’))

dropdown wid = pvEnumChoice(Parent, pv=PV(’EnumPV.VAL’))

buttons wid = pvEnumButtons(Parent, pv=PV(’EnumPV.VAL’),

orientation=wx.HORIZONTAL)

flt wid = wxlib.pvFloatCtrl(Parent, size=(100, -1),

precision=4)

flt wid.set_pv(PV(’XXX.VAL’))

pvText read-only text for Strings

pvTextCtrl editable text for Strings

pvEnumChoice Drop-Down list for
ENUM states.

pvEnumButtons Button sets for
ENUM states.

pvAlarm Pop-up message window.

pvFloatCtrl editable text for Floats,
only valid numbers that obey limits.

A common mixin class allows extensions to other widgets.

Function Decorators help write code that is safe against mixing GUI and CA threads.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Some Epics wxPython Apps:

Area Detector Display.

A 1360× 1024 RGB image (4Mb)
from Prosilica GigE camera.

Displays at ∼10Hz.

MEDM-like Motor Display.
Much easier to use.

Built on Motor device.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Some Epics wxPython Apps:

Area Detector Display.

A 1360× 1024 RGB image (4Mb)
from Prosilica GigE camera.

Displays at ∼10Hz.

MEDM-like Motor Display.
Much easier to use.

Built on Motor device.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

wx Motor Controls

Entry Values can only be valid number.

Entry Values outside of limits are
highlighted. On “Return”, the
nearest limit is displayed.

Tweak Values are auto-generated from
precision and range.

Cursor Focus is sane (unlike MEDM).

More Button leads to Detail Panel.

Multiple Motor Panels can be combined into
Instruments definitions which can save/restore
positions by name (in progress).

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

wx Motor Controls

Entry Values can only be valid number.

Entry Values outside of limits are
highlighted. On “Return”, the
nearest limit is displayed.

Tweak Values are auto-generated from
precision and range.

Cursor Focus is sane (unlike MEDM).

More Button leads to Detail Panel.

Multiple Motor Panels can be combined into
Instruments definitions which can save/restore
positions by name (in progress).

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

wx Motor Controls

Entry Values can only be valid number.

Entry Values outside of limits are
highlighted. On “Return”, the
nearest limit is displayed.

Tweak Values are auto-generated from
precision and range.

Cursor Focus is sane (unlike MEDM).

More Button leads to Detail Panel.

Multiple Motor Panels can be combined into
Instruments definitions which can save/restore
positions by name (in progress).

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

Fast x-ray Fluorescence Mapping with an x-ray microprobe

Continuously scan a pair of Motor
(at ∼100 µm/sec), triggering a de-
tector at 100 Hz.

Scan and Motor Records have
marginal support for this.

Using Newport XPS controller
(and Python!) to define trajec-
tories that triggers multi-element,
multi-channel XRF detector, and
AreaDetector to save data.

Client GUI coordinates data collec-
tion. Perfection in progress. ;)

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

PyEpics3: Epics Channel Access for Python

Summary:

near complete low-level interface to CA.

preemptive callbacks on by default.

thread support.

high-level PV class.

GUI support (only wxPython so far).

tested: linux-x86, linux-x86 64, darwin-x86, darwin-ppc, win32-x86
(base 3.14.11).

tested: Python 2.5, 2.6, 2.7, 3.1.

Easy installation, including Windows.

documented and some unit-testing (∼70% coverage of core)

Core routines (ca, dbr, PV, caget()/caput()): ∼2000 lines of code.

Devices, wxlib (Motor displays): ∼1800 lines of code.

http://github.com/newville/pyepics

Suggestions, contributions, collaborations welcome.

Matthew Newville (CARS, Univ Chicago) Epics and Python October 12, 2010

	Motivation and Perspective
	Why Python? The Standard Answers
	Why Python? The Real Answer
	Why Do Scientists Use Python?

	PyEpics3: Channel Access for Python
	Channel Access for Python: Brief History
	PyEpics3 Overview
	ca module
	PV objects
	Devices

	Conclusions
	PyEpics3: Epics Channel Access for Python

